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ABSTRACT

Recommender Systems have been of interest because they not only satisfy users’
thoughts and needs better but also have direct impacts on business revenue. During
lectures, the professor briefly talked about both Memory-based Collaborative Filter-
ing(CF) and Model-based Collaborative Filtering approaches along with their appli-
cations and difficulties in real-world scenarios. In this paper, I delved into Model-
based CF approaches because they scale well for most real-world scenarios and huge
amounts of customers-item interactions, the model developed can be optimized and
updated periodically to keep up with the latest patterns, and it offers the opportunity
for a variety of techniques to realize its potentials. Specifically, I will focus on recent
developments in recommender systems with deep neural networks and large language
models and illustrate their techniques and implications. Possible future directions and
trends from my perspective are pointed out in the end.

1 Introduction
A system for filtering information that matches users’ preferences with relevant items is called
the Recommender System. It offers solutions for identifying pertinent items or topics from huge
amounts of information[13]. Recommender systems are omnipresent in the current world, so-
cial media news and advertisements, videos and music recommendations, and online stores and
electronic commerce all rely on efficient and robust recommendation systems. As a result, rec-
ommender systems have been an attractive topic for both research and industry Fig.1. Large-scale
service providers and platforms provide personalized and catered services along with intelligent
and manageable recommendations to customers based on their private data and customers’ his-
torical behaviors. Before diving into technical details, let’s look at the overall pipeline of a rec-
ommendation system2. Starting from raw data sources which include explicit feedback (ratings,
likes and comments, etc) and implicit feedback(purchase and browse history, watching time, etc),
the algorithm engineer will develop descriptive features based on raw data information, these fea-
tures are often stored in a centralized data warehouse to facilitate experiment and deployment[2].
Recommendation Models fall into three categories: hybrid systems, content-based filtering, and
collaborative filtering. Collaborative filtering(CF) leverages collaboration among users to make
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recommendations, whereas Content-based filtering uses an item-context matrix in the recommen-
dation process. CF is further subdivided into model-based CF and memory-based CF, which en-
compasses user-based and item-based. The differences between user-based and item-based CF lie
in the primary similarities being emphasized. Model-based CF is becoming popular because of its
scalability and better capability[24, 9]. A hybrid System combines the advantages of both methods
offers more flexibility and delivers better results[29].

Figure 1: Recommendation research trend aligns with the development of Content Providers[13]

Recommender systems play a crucial role in improving click-through and conversion rates. How-
ever, their widespread applications and real scenarios also pose several challenges:

Cold Start : Insufficient information when recommending to new users or for new items

Data Sparsity : Most users have limited feedback, which leads to sparse estimation

Scalability : Imperceptible latency for large-scale recommendation with millions of objects

Diversity : User preference might lead to a narrower scope and stale recommendation

In industry, recommender systems are often divided into several stages Fig.3 such as retrieval,
pre-ranking, ranking, and re-ranking serve different purposes with different techniques and strate-
gies[17]. In the following sections, we cover a few well-established and classical models as well as
recent developments with DL and LLMs in this area, including state-of-the-art research outcomes.
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Figure 2: Recommendation Models and Techniques[13]

Figure 3: Industrial RS pipeline[17]
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2 DL Based Algorithms

2.1 Matrix Factorization
Matrix Factorization[15] makes the assumption that the interaction matrix can be factorized to
yield latent factors that represent user and items. Suppose the interaction(user-item) matrix M ∈
Rm×n, latent matrix for the user U ∈ Rm×k, and latent matrix for itemsV ∈ Rn×k. The recon-
structed interaction matrix is:

M̂ ≈ UV T

In addition, to express the average response, terms for item bias and user bias are included. To
minimize the difference between true and reconstructed interaction matrix, we can optimize the
objective function with SGD and Adam.

J = argmin
U,V,b

∑
(u,i)∈K

∥Mui − M̂ui∥2 + λ(∥U∥2 + ∥V ∥2 + b2u + b2i )

Matrix factorization addresses sparsity and scalability issues to some extent but relies solely on the
interaction matrix, which lacks information and integration of user characteristics, item attributes,
and contextual features.

2.2 Factorization Machines
Factorization Machines[22] is a generalization and extension of matrix factorization and linear
regression model, higher interaction between features are incorporated based on their inner prod-
uct. The FM has excellent computational efficiency and scalability, and it can be utilized across
different stages of the recommendation pipeline. The formula is:

ŷ(X) = w0 +
d∑

i=1

wixi +
d∑

i=1

d∑
j=i+1

⟨vi, vj⟩xixj

feature embeddings V ∈ Rn×k, row vi of V represents the latent vector associated with xi, and
⟨vi, vj⟩ is the interaction between xi and xj . If we rearrange the third term, the computational
complexity decreases from O(kd2) to O(kd) [29].

d∑
i=1

d∑
j=i+1

⟨vi, vj⟩xixj =
1

2

k∑
l=1

(
(

d∑
i=1

vi,lxi)
2 −

d∑
i=1

v2i,lx
2
i

)

To overcome the complexity and inflexibility of feature engineering and the over-generalization
problem that appears in deep neural networks, Google[5] proposed Wide & Deep learning to com-
bine the advantages of generalization and memorization for recommendation systems. The Wide
component captures explicit and co-occurrence patterns and is optimized with FTRL[19] algorithm
while the deep component generalizes well to unexplored feature interactions and is optimized with
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Adagrad.

Figure 4: The spectrum of Wide & Deep models[5]

A further improvement over Wide & Deep eliminates the absolute separation of the two compo-
nents in the early stages. Instead, they use the same set of input raw feature vectors to extract
interactions between low- and high-order features. DeepFM[8] leverages the capability of DNN
to extract feature representation and learn intricate feature interactions. It consists of two parallel
components, an FM component and a deep component. The outputs from two separate modules
are concatenated as the final prediction.

ŷFM(x) = w0 +
N∑
i=1

wixi +
N∑
i=1

N∑
j=i+1

vTi vjxixj

ŷDNN(x) = σ(WLzL−1 + bL) z0 = [e1, e2, ..., ef ]

ŷ = σ(ŷFM(x) + ŷDNN(x))

Figure 5: Wide & deep architecture of DeepFM [8]
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Figure 6: Two tower model for retrieval[12]

2.3 Two-Tower Model
The idea of the Two-Tower model first comes from the Deep Structured Semantic Model[11] which
encodes both queries and documents into a similar low-dimensional space and computes relevance
as the distance measured in this space. From the illustration Fig 6, we can see that embeddings
from user features(queries) and item features(documents) are generated separately from two sub-
sets(towers), and the relevance score is measured as the inner product or cosine similarity between
embeddings. There is no direct interaction between user features and item features in this archi-
tecture, which increases computational speed at the expense of accuracy.

One of the most famous and valuable industrial examples utilizing such architectures is the Youtube
DNN recommendation[6]. In Fig.7, the video watches (video input embeddings) and search tokens
are embedded with word2vec[20] and concatenated with user information such as age, gender, and
location as the input of a three-layers DNN model. The user embedding is the DNN model’s output,
and it is utilized to calculate similarities with the video output embeddings. After that, a probability
distribution across all candidate videos is obtained by applying Softmax. In order to optimize the
training for millions of videos, negative sampling, and importance weighting techniques are used
to speed up the computation process. Following the first step of the video candidate generation
model, another ranking model performs more fine-grained ranking with abundant and informative
features to make more accurate recommendations[25].

2.4 DIN& DEIN
All the methods we discussed above transform input features to a lower dimensional embedding
vector and use neural networks to learn nonlinear relations. Next, we look at two different tech-
niques which take the historical behaviors of users into consideration. An ordered, time-stamped
list of previous user actions is frequently used as the input for these sequence-ware recommender
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Figure 7: Youtube Candidate Generation Model[6]

systems. DIN[33] was first proposed by Alibaba to optimize their online advertising system, it
makes use of users’ past browsing history to learn how to represent their interests in relation to
specific advertisements in an adaptive manner.. Compared to base models, the DIN model intro-
duced an attention mechanism between users’ historical behaviors and candidate advertisements,
emphasizing the importance of historical items relevant to current ads. In Fig.8, a local activation
unit that contains a feed-forward neural network computes the relevance between behaviors of a
user and candidate ads.

vU(A) = f(vA, e1, e2, ..., eH) =
H∑
j=1

a(ej, vA)ej =
H∑
j=1

wjej

{e1, e2, ..., eH} is the embedding vector of behaviors of user U with a length of H, and vA is the
embedding vector of ad A. It is worth mentioning that the out product between user behaviors and
current ads is also included to add explicit knowledge for the modeling.
Further improvements over DIN use more complicated architecture to model the embedding vector
of underlying and dynamic user interests. DIEN[32] develops an interest extractor layer followed
by an interest involving layer to capture temporal interests and interests evolving process from his-
tory behavior sequence, and this system brings 20.7% CTR improvement for the advertising system
of Taobao. The interest extractor layer utilizes a GRU module with an auxiliary loss to guide the
learning process of user interests by monitoring users’ next actions. The embedding vectors of user
interests are fed into the Interest Evolving Layer to model the variations and shifts of interests as
well as capture the evolving process associated with the target Ad. Finally, the AUGRU(GRU with
attentional update gate) is used to combine the outcomes of the attention mechanism and GRU
seamlessly.

ũ′
t = at ∗ u′

t h′
t = (1− ũ′

t) ◦ h′
t−1 + ũ′

t ◦ h̃′
t
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Figure 8: DIN Network Architecture[33]

Less related interest would have less of an impact on the hidden unit in the equation above, which
uses the attention score at to scale the update gate’s dimension. ANGRU pushes the relative interest
to develop smoothly and offers more detailed context information.

Figure 9: DIEN Network Architecture[32]

2.5 MMOE
Taking it a step further, we review one prominent work in neural-based multi-task learning in the
field of movie recommendations. When training neural networks for different purposes simulta-
neously, balancing the trade-offs between inter-task relationships and task-specific objectives is
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Figure 10: (a) Shared-Bottom Model (b) One-gate MoE model (c) Multi-gate MoE model[18]

essential. The common expert submodels are learned across all tasks using MMoE[18], which
uses a mixture of experts (MoE) and optimizes each task using a specialized gating network. The
performance and efficiency of this method have been demonstrated by Google’s large-scale content
recommendation system.

To capture the task heterogeneity without introducing computation overhead, a separate gating
network gk is added for specific task to capture relevant information from each expert.

yk = hk(fk(x)) fk(x) =
n∑

i=1

gk(x)ifi(x) gk(x) = softmax(Wgkx)

where Wgk ∈ Rn×d, d is the feature dimension, and n is the number of experts. The idea is insight-
ful and effective, and the flexibility and trainability for multiple tasks are significantly enhanced.
The model architecture’s prior knowledge, combined with the representations learned by various
experts, collaboratively contributes to the final excellent performance.

2.6 Summary
In the previous section, we discussed several influential and insightful approaches from both
academia and industry. Although most of the work was published before 2019, the architecture
and philosophy they proposed continue to influence current research publications, and some of
them have been adopted as the backbone of the recommendation architectures in major tech com-
panies. There are many other diverse and promising approaches to model development in this field.
Examples include content-based methods[21], collaborative filtering techniques with temporal dy-
namics[14], and Item2Vec[1]. Additionally, systems have been developed using various advanced
techniques, such as Autoencoders[23], graph[7], CNN[34], LSTM[35], Attention[3], DRL[4] and
multi-modal tasks[26]. How to better leverage Neural Networks in recommender systems is an
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ongoing popular research topic in recent decades, innovative techniques and emerging models are
published frequently. Limited by the length of the paper, I encourage interested readers to refer to
[30] for a more comprehensive overview.

3 LLM for Recommendation
LLMs have received paramount attention in recent years. Even though training large language
models from scratch demands significant resources and effort, open-source large language mod-
els are continuously being released at an impressive speed. Their capabilities and performance
on various benchmarks have steadily enhanced, demonstrating notable progress with each itera-
tion. Naturally, one would ask "Could we harness the powerful capabilities of LLMs to enhance
recommendation systems(RS)?". Compared with pattern matching and feature representation ex-
traction in DNN networks, LLMs have superior ability for context understanding and information
summarization, and we also aspire they can reason about their recommendations and handle prob-
lems such as unseen recommendation scenarios or cold start [31]. Although the deployment of
LLMs in recommendation architecture is in its early stages, many researchers have taken the first
step to summarize and organize relevant LLM-empowered recommender systems attempts. They
aim to provide a systematic, informative, and in-depth overview for researchers and practition-
ers. [28] suggested that contemporary LLM research on recommendation systems can be summed
up in three paradigms and further divided into two primary groups: recommendation generative
LLMs and discriminative LLMs. Discriminative LLMs leverage the embedding layers for a range
of downstream applications and serve as the backbone for recommendation tasks, aligning with
Paradigm (1) illustrated in Fig.11. Conversely, generative LLMs convert recommendation tasks
into natural language tasks and produce recommendation results directly by using methods like
prompt tuning, instruction tuning, and in-context learning, which is demonstrated by Paradigm (2)
and (3) in Fig.11.

Being slightly different from the previous work, [31] thoroughly examines the three main ways
that LLMs can improve recommender systems: pre-training, fine-tuning, and prompting. We high-
light this work because it is detail-oriented and well-organized. We start by reviewing how LLM
can be applied for different recommendation tasks and the development timeline of LLMs and
RecSys. From Fig.12, we observe that different queries are designed to support the in-context
learning processes of different LLMs. For instance, the possible rating for a specific movie can
be inferred by analyzing a user’s movie rating history along with the information about the movie
being rated. Not only can LLMs assist traditional recommendation tasks such as Top-K recom-
mendation, rating prediction, and conversational recommendation, but multi-modal information
such as audio and images can be effectively leveraged during the recommendation process. More-
over, the impressive generalization and deductive abilities of LLMs naturally offer insights and
explanations. From the timeline of milestones in RecSys and LLMs domains13, it is intriguing to
see that the two domains not only complement but also enhance each other. Traditional N-gram
and word2vec models stimulate YoutubeDNN[6] to incorporate negative sampling techniques and
treat target and context embeddings differently. There is also a hybrid phase where both PLM-
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Figure 11: Three Paradigms for LLMs on RS[28]

based and DNN-based methods represent the forefront of RecSys research. Stepping into the era
of LLMs and Agents, several powerful LLMs are combined with RecSys to deliver significant per-
formance improvement and intelligent personalized suggestions. After getting an overview of the
taxonomy and timeline of LLMs empowered recommendation systems, it is worth investigating
the similarities and differences between different paradigms and the essential workflow for each
paradigm.

3.1 Pre-training LLMs for RecSys
Due to the technological challenges and immense computing resources required to train LLMs
from scratch, application developers often finetune pre-trained LLMs using their own data. Masked
Language Modeling is used in the training of encoder-only and encoder-decoder Transformer ar-
chitectures, while Next Token Predicting is adopted for the training of decoder-only architectures.
In correspondence with MLM and NTP tasks, PTUM [27] proposes the Masked Behavior Predic-
tion (MBP) and Next K Behavior Prediction (NBP) tasks. The task pairs defined above resemble
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each other, except that the context is transitioned to recommendation tasks. Fig.14a illustrates the
definition of these two recommendation tasks in more depth, we can basically substitute the corpus
with datasets in the field of recommendation systems, and training transformer architectures from
scratch. If we consider LLMs trained on webpages and Wikipedia as mastering world knowledge
of various concepts, then LLMs trained on recommendation corpora have great potential to excel
in recommendation tasks.

3.2 Fine-tuning LLMs for RecSys
The two most mainstream methods for fine-tuning are parameter-efficient fine-tuning and full-
model fine-tuning. The latter method only makes minor adjustments to the model weights or
creates trainable segments for specific tasks. Directly fine-tuned LLMs suffer from the problem
of bias, and one possible solution is to introduce masking during training time and testing neutral-
ization to mitigate this problem. Other research efforts have been put into utilization and privacy
protection. Regarding parameter-efficient fine-tuning, LoRA[10] has been popular due to its sim-
plicity and efficiency. Taking the immediacy and response time of recommendation tasks into
consideration, most papers have focused on effectively fine-tuning 7B or 8B LLMs and minimiz-
ing latency for different tasks.

3.3 Prompting LLMs for RecSys
Prompting LLMs for recommendation tasks can be further categorized into three categories ac-
cording to the function of LLMs: LLMs act as recommenders, Bridge LLMs and RecSys, and
LLM-based autonomous agents. From Fig.14c, method one refers to the in-context learning where
there is a parameter update of LLMs, we simply outline the task and requirement to retrieve the ex-
pected solution. Prompt tuning optimizes the input prompt with trainable prompt tokens to enhance
the performance for prompts concentrated on specific tasks. At last, instruction tuning finetunes
LLMs with multiple instructions associated with various tasks and extends the applicability to
multiple tasks.
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Figure 13: Timeline of milestones in RecSys and LLMs[31]

Figure 12: The application of LLMs for different recomendation tasks[31]
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(a) A workflow of pre-training LLMs for recommender systems

(b) A workflow of fine-tuning LLMs for recommender systems

(c) A workflow of prompting LLMs for recommender systems

Figure 14: Workflow of three paradigms[31]14



3.4 summary
Although the impressive generation and reasoning skills of LLMs have attracted plenty of attention
and interest in expanding their capability across many areas, they still demand substantial effort and
modifications to perform effectively in diverse domains. Once the challenges of adapting LLMs
for general recommendation tasks are tackled, high-quality and personalized suggestion services
would be the next interesting and compelling research topic. In summary, research outcomes and
applications on applying LLMs for RecSys are still in their early stages and it is anticipated to
see more practical and groundbreaking ideas and applications emerge in the near future. To get a
more comprehensive and systematic review of recently published research papers in this domain, I
encourage readers to explore Fig.15 which presents a dissection of research papers addressing the
problem of each component in the recommendation cycle.

Figure 15: The illustrative dissection of research questions regarding LLMs in RS[16]

4 Outlook
DL-based methods and LLMs techniques for RecSys face diverse challenges to be overcome and
aspects to be improved. For DL-based methods, deep composite models generally bring higher ac-
curacy and improve the modeling of various important factors. However, the sensible way to fuse
and complement each model to really enhance the overall performance is still worth investigating,
and this also demands consideration for real-world applications. Regarding temporal dynamics
in recommendation systems, the user history behavior seems to be a time series data, direct se-
quential modeling breaks the intention of recommendation tasks and introduces redundant and
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useless information in this process. The relationship between user and item features can evolve
together or independently in different time periods which makes it hard to adaptively model and
discover the underlying temporal structure. The cross-domain recommendation is common but
under-explored in many real-world scenarios, it requires the model to be able to recognize the
generalizations and variations across various domains and generate recommendations. For several
methods we discussed above, it is worth noting that their efficiency and efficacy are directly ex-
amined and ascertained by services provided by large technology companies. The usefulness of a
recommendation system is directly linked to its scalability and complexity, incremental learning
and inference optimization are the keys to ensuring these properties[30].

The improvement of LLMs for RecSys comes from two aspects, the development of LLMs them-
selves and better adaptability between LLMs and recommender systems. Well-known hallucina-
tion phenomena can have a larger impact on recommendation systems, especially in fields like
medical and legal advice. Safety, fairness, and privacy are also crucial factors to be considered
when combining LLMs with RecSys. To prevent malicious and inappropriate content outputs,
both pre-processing of recommendation task prompts and adversarial training techniques can po-
tentially improve the safety and robustness of LLMs-empowered RecSys. Discrimination inherited
from LLMs is exacerbated when putting under the context of recommendations, some items can
be promoted or disregarded due to unintended bias. Because customized or personalized sugges-
tion services make extensive use of individual information, this identifiable information leakage
becomes a major concern. Both prompt encryption and systems-level protection are studied to
guarantee users’ privacy, but there still lacks universal and scalable ways to manage users’ privacy
with LLMs for RecSys. End-to-end RecSys demands low latency and re-calibration efficiency, the
effects of tuning for multi-modal RecSys are a promising future direction[31].

Apart from industrial-level recommendation systems benefiting from the rise of DL and LLMs,
I notice that many RAG applications or personal assistants based on LLMs are another form of
recommendation systems. These systems allow users to customize and manage the use of their
personal information and private databases to prompt LLMs for recommendations or informa-
tion. Although they’re in their primitive form and we haven’t seen killer applications originating
from such workflow, more intelligent and insightful recommendations are always desired. Broadly
speaking, we can imagine that home assistants, driving agents, and life agents are all making rec-
ommendations to some degree. Not only can recommendation systems increase the revenue for
technology companies on their search, advertisement, and item recommendations business, but in-
telligent agents can be embedded into various aspects of daily lives to make accurate and tailored
suggestions and recommendations which consumes a lot of time and energy nowadays. The global
digital transformation and web development of twenty years ago made knowledge and information
accessible for everyone all over the world, I believe advancements in recommender systems and
LLMs over the next twenty years would contribute to the transformation of more intelligent and
efficient lifestyles again.
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